

60-Inch Water Main Failure in Chevy Chase and PCCP Program Update April 8, 2013

What is the Problem?

PCCP is a composite structure made up of high strength concrete, extremely high strength steel wire, a thin low strength steel cylinder and is sealed pipe to pipe with a rubber gasket

PCCP Section

Washington Suburban Sanitary Commission

Failed 48-Inch Summer 2008

Shown is Side of Cylinder Rupture.

Failed 66-Inch December 2008

Failure is the bottom hole, not the top one & near the joint...

Failed 42-Inch January 2009

Note Failed Wires Showing Corrosion

Failed 54-Inch January 2011

After cutting the pipe apart - failure is the second hole from the left

Pipeline Runs Approximately Parallel to Connecticut Avenue – Failure Pointed Away From the Road

Washington Suburban Sanitary Commission

Timeline

Monday, March 18

- 13:03 Citizen Reports Water Bubbling Near 8101 Connecticut Avenue
- 13:20 Information Relayed to Inspector
- 13:50 Inspector Determines Water Coming from Valve Vault
- 14:30 Crew Arrives and Pumps Out Vault Decided to Repair Next Day
- 19:40 Montgomery Main Zone Tanks Began Falling
- 20:01 Received Police Report
- 20:30 Crew Dispatched to Isolate Main
- 21:00 MC Fire Board Notified to Expect Fire Flow Issues
- 21:30 Gas & Electric Utilities Arrived
- 22:18 Alert Montgomery Sent Message About the Break
- 22:30 PGC Fire Board Notified of Impending Fire Flow Issues

Timeline

Tuesday, 19 March

- 02:00 Isolated Water Main
- 03:25 WSSC Notification of Water Main Shutdown
- 04:00 Montgomery Main Zone Tanks Began Refilling
- 04:49 WSSC News Release About Water Use Restrictions
- 05:30 Alert Montgomery Sent Message About Water Use Restrictions
- 07:00 Issued NTP to Emergency Contractor
- 09:00 Damaged Electrical Overhead Line Relocated Damaged Gas Line Relocated
- 14:00 Excavation of Water Main Began
 Installed New 10" Valve on 10" Main to Renew Water Service

Timeline

Wednesday, 20 March

18:00 Broken Pipe Removed – Began Installing New Section

Thursday, 21 March

• 18:00 Repair Completed – Awaiting 12-hour Cure Time for Grout

Friday, 22 March

- 04:00 Began to Refill Water Main
- 09:00 Water Main Charged Began Flushing
- 21:00 Water Samples Taken for 18-hour Bacterial Test

Saturday, 23 March

- 16:00 Water Tested Good Began to Open Valves
- 20:00 All Valves Open and Pipeline Returned to Service

System Status Complications (at the time of the break)

Other Transmission Mains Out of Service

- Potomac WFP to Tuckerman Lane 96" MC Main/PGC
 Main/High Zones PCCP Inspection
- Germantown 48/66" MC High Zone PCCP Inspection and 54" Valve Installation
- Patuxent WFP 42" PGC PGC Main Zone SHA ICC/Contee Road Construction

What Do We Know About This Failure?

- The Pipe was last inspected in the FY 10 Program
- AFO was Installed in the FY 10 Program
- Since Then There Have Been Six Wire Breaks
 Recorded All On the Opposite End from the Break
- Recorded Wire Break Activity Was Not a Concern
- There Were No Wire Breaks Recorded at the Failure Location Before the Failure
- A Leak Was Reported Surfacing at This Location
- The Pipe Failed Catastrophically
- The Pipe Geometry is Atypical
- Final Forensic Report Due EO June

Failed Pipe Segment Geometry

Failed Pipe Segment Geometry

Failed Pipe Segment Geometry

Can We Just Replace Them?

The Cost to Replace Critical Lines is Prohibitive

pipe size	mileage of PCCP per pipe size	cost of replacement construction	engineering cost	total cost of replacement
16	71.9	\$153,371,328	\$30,674,266	48" – 96"
20	35.1	\$132,972,840	\$26,594,568	\$1.23B
24	64.5	\$251,248,140	\$50,249,628	
30	34.2	\$238,631,184	\$47,726,237	
36	37.7	\$330,831,072	\$66,166,214	
42	30.3	\$274,532,544	\$54,906,509	
48	18.3	\$171,024,480	\$34,204,896	\$205,229,376
54	8.7	\$84,097,332	\$16,819,466	\$100,916,798
60	21.9	\$257,310,108	\$51,462,022	\$308,772,130
66	12.8	\$153,584,640	\$30,716,928	\$184,301,568
72	4.6	\$56,178,144	\$11,235,629	\$67,413,773
78	1	\$14,802,480	\$2,960,496	\$17,762,976
96	10.7	\$293,129,496	\$58,625,899	\$351,755,395
	351.7	\$2,411,713,788	\$482,342,758	\$2,894,056,546

Excessive Downtime to Replace Critical Lines is Unavoidable

48" & Bigger

Over 115 Years
Downtime

2/3 Mile Per Year to Replace w/ Steel & Cathodic Protection

For Approximately 2% of Sections

So What Are We Doing?

PCCP Inspection Program

- Mid-1990's--Sonic/Ultrasonic Pulse Echo was adapted to PCCP and added to the Program--identifies micro-cracking and concrete out of compression.
- 2001--Electromagnetic (RFEC/TC) testing was added to the Program-estimates number of broken pre-stressing wires in each pipe section
- Early 2007, permanent Acoustical Fiber Optic (AFO) monitoring first installed-- monitors wire breaks following a baseline condition assessment
- In late 2008, acoustical leak detection methods were added to be performed prior to dewatering for the inspections

PCCP Inspection Program

Washington Suburban Sanitary Commission

- WSSC has a total of 145 miles of Larger Pre-stressed Concrete Cylinder Pipe (PCCP) Water Mains including:
 - 77 miles 48" and Greater
 - 68 miles 36" and 42"
- Program focused on mains 48-inch and greater--considered a higher risk due to their diameter, operational criticality, and highest consequence of failure
- Current program is adding 36 and 42-inch lines

PCCP Inspection Program

Washington Suburban Sanitary Commission

- Inspection includes visual and sounding, sonic/ultrasonic, electromagnetic survey, acoustical leak testing, long term acoustical monitoring
- Establishes baseline condition, locates leaks, identifies needed repairs/replacements and planning for long term capital replacements
 - Engineering analysis done to determine if deteriorated pipes require replacement or can be repaired with carbon fiber internally or tendons externally
 - Permanent acoustical monitoring listens for additional wire break activity as early warning sign and establish rate of deterioration
- Inspections take 1-2 months to perform depending upon pipeline length
 - Shut down and dewater pipeline during colder months, inspect and repair before July when demand increases
 - During higher water main break season the Maintenance Staff has to closely plan as their resources are already taxed with responses to water main breaks

Transmission Mains

- Main Water Conduits
- Some Redundancy
- Limits on NumberThat Can Be Out at Once

Inspection Technologies

Acoustical Fiber Optic Cable Monitoring

- What Does it Do?
 - Monitors Acoustical Wire Break Activity
 - Coupled with Baseline Determines Rate of Deterioration
 - Used to Prioritize/Adjust PCCP Inspection Schedule
- What Does it Not Do?
 - Prevent Deterioration
 - Monitor for Pipe Leaks
 - Guarantee a Pipe Will Not Fail

Does it Work?

The First One - 96" Pipeline at Tuckerman Lane - July 2010

Twelve Others in FY 11/12/13 Programs

- Repaired 6 54" Sections Springdell Place (June 2011)
- Replaced 1 96" Section at Ridge Mist Terrace (January 2012)
- Repaired 4 66" Sections at Nevis Road (November 2012)
- Will Repair 1 96" Section at Big Piney Way (May 2013)

Sustainable PCCP Program

- A Sustainable PCCP Inspection and Condition Assessment Program is Critical to the Mission of WSSC
 - Ensures timely inspection and repair of deteriorated pipe sections
 - ✓ Provides safer, more reliable water supply
 - ✓ Helps ensure the pipelines reach their intended useful life
 - ✓ Provides condition assessment for long term capital planning
- Program Must Remain a Top Budget Priority and Funded Annually to Assure Public Safety and Reliability of the Water Supply

Ouestions

